A new platform for fast molecular detection of MDR and XDR resistant strains of M. tuberculosis and of drug resistant malaria


Recent developments in molecular tools combined with updated epidemiological data provide novel challenges to the development of modern molecular diagnostics. The increasing threat of infections due to Mycobacterium tuberculosis, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections poses important questions that call for development of integrated tools for rapid diagnosis. In the specific case of tuberculosis (TB), an integrated rapid diagnostic approach should be able to allow at the same time species identification, drug susceptibility testing and molecular typing. We propose to develop and validate a silicon-based platform for molecular biology testing consisting in a single disposable device (biochip) and on associated specific instruments (reader).
This technology is able to simultaneously serve as a platform for high specificity amplification and hybridisation of selected targets, and to provide the diagnostic report within few hours. Main advancement over existing technology (i.e. Real-Time PCR) consists in the possibility to perform the test at competitive costs, using an higher number of genetic probes by integrating multiple, separate PCR chambers and medium density array (50-200 probes).

  • Status
  • Completed
  • Project Launch
  • 01 January 2008
  • Project completed
  • 30 June 2011
Health tuberculosis malaria