Computationally driven design of innovative cement-based materials


Albeit the C-S-H gel constitutes the main ingredient of cementitious skeletons and their life-service depends crucially on it, the possibility of tuning the intrinsic nature and properties of the C-S-H gel has been simply out of reach. Fortunately this long-standing impossibility can be currently overcome by the complementary action of new experimental capacities and stronger simulations schemes which explicitly pay attention to the nanoscale. Recent nanoindentation experiments have revealed that the C-S-H gel can present itself either in a low stiffness and low density variety (called LD C-S-H gel) or in a variety with a high stiffness and high density (called HD C-S-H gel).

This dissimilar bearing capacity is indeed much more pronounced in their resistance to osteoporosis-like degradation processes (aging!). The question that arises is straightforward: Could the formation of the stronger and more durable HD C-S-H varieties be promoted against the LD- ones? CODICE aims to answer to this question by means of on-top-of-the-art simulations.

  • Status
  • Completed
  • Project Launch
  • 01 September 2008
  • Project completed
  • 31 August 2011
nano-technology Cement computational toolkits